AN EXTENSION OF BURNSIDE'S THEOREM TO INFINITE-DIMENSIONAL SPACES

BY

V. LOMONOSOV*

Department of Mathematics, Kent State University, $Kent, OH$ *44242, USA*

ABSTRACT

The classical Burnside's Theorem guarantees in a finite dimensional space **the** existence of invariant subspaces for a proper subalgebra of the matrix algebra. In this paper we give an extension of Burnside's Theorem for a general Banach space, which also gives new results on invariant subspaces.

Introduction

The fundamental Burnside Theorem for finite-dimensional representations says that an algebra of linear operators on a finite-dimensional space F , without invariant subspace, must be the algebra $L(F)$ of all linear operators on the space. In other words, if an algebra R is strictly contained in $L(F)$, then there exists $x \in F$ and $\varphi \in F^*$ s.t. for every $A \in R$, $(Ax, \varphi) = 0$.

In this paper we will extend this result to Banach spaces in the following way. In Theorem 1 below, let B be a Banach space, *L(B)* the bounded linear operators on B and $K(B)$ the compact operators on B. Let $|||A|||$ denote the essential norm of A , i.e. the distance from A to the space of compact operators. A weakly dosed algebra is an algebra dosed in weak operator topology.

THEOREM 1: Let R be a weakly closed subalgebra of $L(B)$, $R \neq L(B)$. Then *there exists* $x \in B^{**}$ and $y \in B^*$, $x \neq 0$ and $y \neq 0$, *s.t. for every* $A \in R$

(1)
$$
|(x, A^*y)| \le |||A|||.
$$

^{*}Partially supported by a grant from the National Science Foundation. Received February 5, 1991 and in revised form May 1, 1991

330 **V. LOMONOSOV Isr. J. Math.**

If B is finite-dimensional then $|||A||| = 0$, so Theorem 1 gives Burnside's theorem.

For a given subset $S \subset L(B)$ and a vector $x \in B$ put $Sx = \bigcup_{A \in S} Ax$ and $S' = \bigcup A^*$. We say that S is transitive if it doesn't have a nontrivial invariant subspace and S is essentially transitive if the conclusion of Theorem 1 is false for S. We say that a subalgebra $R \subset L(B)$ has the Pearcy-Salinas (PS) property if there exists net $\{A_{\alpha}\}\subset R$ and a nonzero operator $A\in L(B)$ such that:

$$
\lim_{\alpha}(x, A_{\alpha}^*y) = (x, A^*y)
$$

for every vector $x \in B^{**}$ and every functional $y \in B^*$ and

(3)
$$
\lim_{\alpha} |||A_{\alpha}||| = 0.
$$

Of course, every bounded operator is a weak limit of finite-dimensional ones, so it is the assumption ${A_{\alpha}} \subset R$ that makes the condition nontrivial.

COROLLARY 1: *Let* R be a weak/y dosed *proper* subaJgebra of *L(B) with PS* property. Then the algebra R' is nontransitive.

Proof: Let x and y be as in Theorem 1. Then for every pair of operators T_1, T_2 in R we have

$$
|(x, T_2^* A^* T_1^* y)| = \lim_{\alpha} |(x, T_2^* A_\alpha T_1^* y)|
$$

\n
$$
\leq \lim_{\alpha} ||T_2 A_\alpha T_1|||
$$

\n
$$
\leq \lim_{\alpha} ||T_2|| ||T_1|| ||A_\alpha|||
$$

\n= 0.

It is easy to see that one of the three subspaces

$$
\bigcap_{T\in R} \ker(T^*), \overline{R'y}, \overline{\operatorname{span}_{T_1, T_2\in R}(T_2^*A^*T_1^*y)}
$$

is a nontrivial invariant subspace for the algebra R' .

If the algebra R contains a nonzero compact operator then the PS property is trivially true for R. So we get the results obtained by the author's earlier techniques [8]. [] COROLLARY 2: If a weakly closed proper *subalgebra R* of $L(B)$ contains a *nonzero compact operator, then the algebra R' is nontransitive.*

Of course the existence of a hyperinvariant subspace in B^* for operators that commute with a compact operator follows from Corollary 2. It should be mentioned that the following theorem by Pearcy and Salinas [6] is not a consequence of the author's earlier techniques [see 7].

THEOREM (PEARCY-SALINAS): *Let T be a bounded operator on Hilbert space.* Assume that there is a sequence of rational functions (s_n) s.t. $s_n(T)$ converges *weakly to a non-zero operator A and s.t.*

$$
|||s_n(T)||| \to 0 \text{ as } n \to \infty.
$$

Then T has a nontrivial invariant subspace.

However, from Corollary 1 we get the following strengthening of the Pearcy-Salinas Theorem as

COROLLARY 3: Let T be a *bounded operator on Banach space. Assume that* there is a nonzero operator A and net $\{A_{\alpha}\}\$ of operators that commute with T *s.t. (2) and (3) hold. Then T* has a nontrivial hyperinvariant subspace.*

The commutant of T is a proper subalgebra of $L(B)$, so Corollary 3 is an immediate consequence of Corollary 1.

COROLLARY 4: Let $S_{\phi} \subset L(B)$ be defined by $S_{\phi} = \{A \in R, |||A||| \leq 1\}$. Then there exists a nonzero functional $y \in B^*$ s.t. the set S'_dy is not dense in B^* .

Proof: Let x and y be as in Theorem 1. Then $\sup_{\| |A^*|| \leq 1} |(x, A^*y)| \leq 1$, so $S'_y y$ is not dense in B .

This corollary was pointed out to us by S.W. Brown, who has obtained it and similar results in the case of a commutative algebra.

In Hilbert space Theorem 1 has the following equivalent formulation.

THEOREM 2: *Let R be as m* Theorem 1. *Let B* be *Hilbert* space, *then there exist two bounded nets* (x_{α}) *in B and* (y_{α}) *in B s.t.* $x_{\alpha} \stackrel{w}{\rightarrow} x \neq 0$, $y_{\alpha} \stackrel{w}{\rightarrow} y \neq 0$ *and for every A E R*

$$
\langle Ax_{\alpha}, y_{\alpha}\rangle \rightarrow 0.
$$

332 V. LOMONOSOV lsr. J. Math.

Proof of Theorems 1 and 2: Let B be a Banach space, Q a compact Hausdorff space, R a subalgebra of $L(B)$, WQ the Banach space of weak^{*}-continuous functions $Q \to B^*$ with sup-norm, *SQ* the subspace of *WQ* consisting of the strongly continuous functions, NR the algebra of norm-continuous functions $Q \to R'$. Let $C = C(Q)$ be the algebra of all complex-valued continuous functions on Q. Every function $f \in C(Q)$ is a linear operator on the space WQ . We let f^* denote its adjoint.

Definition: Let M be a subspace of *WQ,* invariant under the algebra C. We say that $\theta \in M^*$ is a point functional if there exists a point $q \in Q$ s.t.

$$
(4) \t f^*\theta = \overline{f(q)}\theta
$$

for every function $f \in C$.

If E is a subspace in a Banach space let U_E denote the unit ball of E and E^{\perp} denote the annihilator of E in the dual space. We say that a functional $\theta \in M^*$ is a $\delta(q, x)$ functional or simply δ -functional if there exists a point $q \in Q$ and an element $x \in B^{**}$ s.t. if $h \in M$ then

$$
\theta(h)=(x,h(q)).
$$

LEMMA 1: Let $\theta \in M^*$ be a point functional and assume $M \supseteq SQ$. Then the *restriction* $\chi = \theta|_{SQ}$ *is a* δ *-functional.*

Proof: It is known [3] that the functional χ has the form

(6)
$$
\chi(h) = \int_{Q} (d\chi(q), h(q))
$$

where $d\chi$ is a regular Borel measure on Q with values in B^{**} . Let $q \in Q$ be as in (4). For an open set $V = Q/\{q\}$ and for a given $\epsilon > 0$ there exists a closed set $F \subset V$ s.t. $||d\chi|_V - d\chi|_F|| < \epsilon$. Then there exists function $f \in C(Q)$ s.t. $f(q) = 0, f|_F \equiv 1$. If G is given Borel set and $G \subset F$, then

$$
d\chi(G) = \int_G d\chi = \int_G \overline{f} d\chi = f^* \chi = \overline{f(q)} \chi = 0,
$$

so $d\chi|_{\mathbf{F}} = 0$. This gives for every $\epsilon > 0$, $||d\chi|_{\mathbf{V}}|| < \epsilon$, and so $d\chi|_{\mathbf{V}} = 0$.

Let H be a Hilbert space with orthogonal basis $\{e_n\}$, $LIM(\alpha_n)$ a Banach limit in the space l^{∞} , Q compactification of integer numbers by $\{\infty\}$. Then $\theta(h) = LIM(h(n), e_n)$ is an example of a point functional that is not δ -functional.

Let $Q \times U_B$ be the topological product of the compact Q and the ball U_B with norm topology. The functions $s \in WQ$ and $f \in C(Q)$ define complexvalued functions $L(s)$ and $L_1(f)$ on $Q \times U_B$ for the formulas $L(s)(q, x) =$ $(x, s(q)), L_1(f)(q, x) = f(q).$

LEMMA 2: $L(s)$, $L_1(f)$ are continuous functions on

$$
Q\times U_B.
$$

Proof: Let $q_0 \in Q$ and $x_0 \in U_B$. Let V_{q_0} , V_{x_0} be open subsets defined by

$$
V_{q_0} = \{q \in Q : |(x_0, s(q) - s(q_0))| < \epsilon/2\},
$$
\n
$$
V_{x_0} = \{x \in U_B : ||x - x_0|| < \epsilon/2|s|\};
$$

then for all $(q, x) \in V_{x_0} \times V_{q_0}$ we have

$$
|(x,s(q)) - (x_0,s(q_0))| \le |((x - x_0,s(q))| + |(x_0,s(q) - s(q_0))|
$$

$$
\le \frac{\epsilon}{2|s|}|s| + \frac{\epsilon}{2} = \epsilon,
$$

so $L(s)$ is continuous. The continuity of $L_1(f)$ is obvious. U_B is a completely regular space, so there exists the Cheh compactification F of the space $Q \times U_B$. The functions $L_1(f)$ and $L(s)$ in Lemma 2 have continuous extensions to all of F. Thus $L(M)$, $L(N)$, $L_1(C(Q))$ are subspaces of $C(F)$, $L(M) \supset L(N)$, and $L(M)$ and $L(N)$ are invariant for $L_1(C(Q))$. Moreover, the operators $L: M \to C(F)$ $\text{and } L_1: C(Q) \to C(F) \text{ are isometries.}$

LEMMA 3: Let $\varphi \in L(M)^*, f \in C(Q)$ and

$$
(L_1f)^*\varphi=\gamma\varphi,
$$

then $f^*(L^*\varphi) = \gamma(L^*\varphi)$.

Proof: For a given function $h \in WQ$ we have $(h, f^*(L^*\varphi)) = (fh, L^*\varphi)$ $(L(fh),\varphi)=(L_1(f)L(h),\varphi)=(L(h),L_1(f)^*\varphi)=(L(h),\gamma\varphi)=(h,\gamma L^*\varphi).$ 334 **V. LOMONOSOV** Isr. J. Math.

LEMMA 4: Let M, N be subspaces of WQ , invariant for $C(Q)$. Let $M \supset N$ and let $\theta \in M^*$ be an extreme point of $U_{N^{\perp}}$. Then θ is a point-functional.

The proof of this lemma is similar to De Branges' famous proof of the Stone-Weierstrass Theorem [2].

Proof: Let $\hat{\theta}$ be a functional in $L(M)^*$ s.t. $L^*(\hat{\theta}) = \theta$. Then, obviously 1 = $|\hat{\theta}| = |\theta|$. By the Hahn-Banach and Riesz Theorems there exists a measure $d\mu \in C(F)^*$ which is an extension of $\hat{\theta}$ to space $C(F)$. Let f be a function in $C(Q)$, s.t.

$$
(7) \t\t\t 0 \le f \le 1
$$

and $\hat{f} = L_1(f), d\mu_1 = \hat{f}d\mu, d\mu_2 = (1 - \hat{f})d\mu, m_1 = ||d\mu_1||, m_2 = ||d\mu_2||$. Then $\{d\mu_1, d\mu_2, d\mu\} \subset L(N)^{\perp}$ and $m_1 + m_2 = \int_F \hat{f}|d\mu| + \int_F(1-\hat{f})|d\mu| = \int_F |d\mu| = 1.$ If $\theta_1 = d\mu_1|_{L(M)}, \theta_2 = d\mu_2|_{L(M)},$ then $|\theta_1| + |\theta_2| \geq |\theta_1| + |\theta_2| = 1$ and $|\theta_1| + |\theta_2| \leq$ $m_1 + m_2 = 1$, so we have $|\theta_2| = m_2$, $|\theta_1| = m_1$. If $m_1 = 0$, then $(L_1 f)^* \hat{\theta} = 0$, so by Lemma 3, $f^*\theta = 0$. If $m_2 = 0$ then $(1 - f)^*\theta = 0$. If $m_1 \neq 0$ and $m_2 \neq 0$ then we have

$$
\hat{\theta} = m_1 \frac{\theta_1}{m_1} + m_2 \frac{\theta_2}{m_2}, \ \|\frac{\theta_1}{m_1}\| = 1, \ \|\frac{\theta_2}{m_2}\| = 1.
$$

The functional $\hat{\theta}$ is an extreme point in the ball $U_{L(N)^{\perp}}$, so we get $\theta_1/m_1 = \hat{\theta}$ or, by Lemma 3, $f^*\theta/m_1 = \theta$. So for any function f with property (7) the functional θ is an eigenvector and the functions of this type obviously generate $C(Q)$. The corresponding eigenvalue is a multiplicative functional on $C(Q)$, so Gelfand's theorem now gives the lemma, v

LEMMA 5: Let $T \in K(B)$ and $h \in WQ$. Then $T^*h \in SQ$.

We omit the simple proof.

Let R be an algebra in $L(B)$ and let $h \in WQ$, $||h|| = 1$. By applying the algebra *NR* to h we get subspaces

$$
N = NR(h), M = \text{ span } (N, SQ).
$$

Then $M \supset N$ and M and N are invariant for the algebra $C(Q)$. Let φ be a point functional, $\varphi \in M^*$. Then, by Lemma 1, $\varphi|_{sq}$ is a $\delta(q, x)$ functional.

LEMMA 6: If functional $\varphi \in N^{\perp}$, then for every operator $A \in R$

(8)
$$
|(x, A^*h(q))| \leq 2|\varphi| \, |||A|| \, |h|.
$$

Proof: Let T be a compact operator s.t. $||A - T|| \le |||A|| + \epsilon$. Then we have

$$
|(x, A^*h(q))| = |\delta A^*h| = |\delta(A^*h) - \varphi(A^*h)|
$$

= $|(\delta - \varphi)A^*h| \le |(\delta - \varphi)(A^* - T^*)h| + |(\delta - \varphi)T^*h|.$

By Lemma 5, $T^*h \in SQ$, so by Lemma 1, $\delta(T^*h) - \varphi(T^*h) = 0$. It is clear that $|\delta| \leq |\varphi|$, so we get

$$
|(x, A^*h(q))| \leq 2|\varphi| \, ||A-T|| \, |h| < 2|\varphi| (|||A||| + \epsilon)|h|.
$$

Since ϵ is arbitrary,

$$
|(x, A^*h(q))| \leq 2|\varphi| |||A|| |||h||.
$$

 \Box

Let $\sigma_F(T)$ be the subset of the spectrum of an operator $T \in L(B)$ consisting of the isolated points of finite multiplicity.

LEMMA 7: Let the subspace $L \subset B$ have finite codimension. Assume $\alpha > 0$ and

$$
\sup_{x\in L}\frac{\|Tx\|}{\|x\|}<\alpha.
$$

Assume $\gamma \in \sigma(T)$ and $|\gamma| > \alpha$. Then $\gamma \in \sigma_F(T)$

Proof: It is sufficient to prove this lemma in the case that γ is a boundary point of $\sigma(T)$. Let P be a bounded projection on L. Then the operator $T_1 = (T - \gamma I)P$ is semi-Fredholm.

It is clear that $\ker T_1 = \ker P$ and if $x \in L$, then

$$
|T_1x| = |(T - \gamma I)Px| = |(T - \gamma I)x| \ge (|\gamma| - \alpha)|x|.
$$

So T_1 has finite-dimensional kernel and closed range. $T-\gamma I$ is a finite-dimensional perturbation of T_1 , so by [1, Corollary 1.3.7] $T-\gamma I$ is also semi-Fredholm. Moreover, $T - \gamma I$ is a limit of invertible operators so it is a Fredholm operator with index zero by [1, Theorem 4.2.1, Corollary 3.2.10]. Now by [9, Corollary 3.11] $T - \gamma I$ is a compact perturbation of an invertible operator, so by Weil's theorem γ is isolated and has finite multiplicity.

336 V. LOMONOSOV Isr. J. Math.

LEMMA 8: *If R is an essentially transitive subalgebra, then R contains an operator T with the following properties:* $1 \in \sigma_F(T)$ and if $\gamma \in \sigma(T) \backslash \sigma_F(T)$ *then* $|\gamma| < \frac{1}{2}$.

Proof: Let y be a functional in B^* , $|y|=3$, and let Q be a ball of radius 2 with center in y. Then Q is weak^{*} compact and $\{0\} \notin Q$. The function $h(q) \equiv q$ is obviously weak^{*} continuous, so $h(q) \in WQ$ and $|h(q)| = 5$. Let M and N be subspaces of WQ as in Lemma 6. If N is not dense in M, then there exists a functional $\theta \in M^*$ which is an extreme point of $U_{N^{\perp}}$. Then by Lemma 6 there exists a point $q_0 \in Q$ and a nonzero element $x \in B^{**}$ s.t. the inequality

$$
|(x, A^*h(q_0))| \leq 2|||A|| \, |h|
$$

holds for every operator $A \in R$. For $y = h(q_0)/2|h|$ we get inequality (1). This contradiction gives that N is dense in M . Let g be a function in SQ defined by $g(q) \equiv y$. Then there exists an operator-valued function $A(q) \in NR$ s.t. $|A(q)h(q) - g(q)| < \frac{1}{8}$. Thus the function $A(q)$ generates a continuous map $\Psi: Q \to Q$ by the formula $\Psi(q) = A(q)q$. By Tychonoff's fixed point theorem there exists a point $q_0 \in Q$ s.t. $A(q_0)q_0 = q_0$. We let T denote $A(q_0)$. Let V be open set in Q defined by

$$
V = \{q \in Q : ||A(q) - T|| < \frac{1}{48}\}.
$$

Then

$$
\sup_{q \in V} |Tq - y| \le \sup_{q \in V} |(T - A(q))q| + \sup_{q \in V} |(A(q)q) - y|
$$

$$
\le \frac{5}{48} + \frac{1}{8} < \frac{1}{4}
$$

If $V_1 = \{z : |z| \leq 1, z + q_0 \in V\}$ then V_1 is a weak* open subset of the unit ball $U_{\mathbf{B}^*}$ that contains $\{0\}$ and

$$
\sup_{z \in V_1} |Tz| = \sup_{z \in V_1} |T(z + q_0) - Tq_0|
$$

\n
$$
\leq \sup_{q \in V} |Tq - Tq_0|
$$

\n
$$
\leq \sup_{q \in V} |Tq - y| + |Tq_0 - y|
$$

\n
$$
< \frac{1}{4} + \frac{1}{4} = \frac{1}{2}
$$

By definition of weak* topology there exists a subspace $L \subset B^*$ of finite codimension s.t. $L \cap U_{B^*} \subset V_1$. We have

$$
\sup_{z\in U_L}|Tz|\leq \sup_{z\in V_1}|Tz|<\frac{1}{2},
$$

so by Lemma 7 every point $\gamma \in \sigma(T)$, $|\gamma| \geq \frac{1}{2}$ is an isolated point in $\sigma(T)$ of \blacksquare finite multiplicity. \blacksquare LEMMA 9: Let R be a uniformly closed essentially transitive subalgebra $L(B)$, then R contains a nonzero finite-dimensional projection.

Proof: Let T be an operator as in Lemma 8. Since $\{\gamma : (T - \gamma I)^{-1} \in R\}$ is a component of the resolvent set of T it follows that if $(T - \gamma I)^{-1}$ exists and $|\gamma| \geq \frac{1}{2}$ then $(T - \gamma I)^{-1} \in R$.

By Lemma 8 there exists circle $\alpha \subset C$ s.t. 1 is the only point of $\sigma(T)$ inside α and for every point $\gamma \in \alpha$ $(T - \gamma I)^{-1} \in R$. By the Riesz theorem

$$
P=\frac{1}{-2\pi i}\int_{\alpha}(T-\gamma I)^{-1}d\gamma
$$

is a nonzero finite-dimensional projection and $P \in R'$. If $P = P_1^*$ then P_1 is a $\hbox{finite-dimensional projection in } R. \hspace{2cm} \Box$

Now to finish the proof of Theorem 1 we need the following well-known fact [8].

LEMMA 10: If a *transitive algebra R* contahas a *nonzero finite-dimensional operator, then R is weakly dense in* $L(B)$ *.*

Essential transitivity implies transitivity, so by combining Lemma 9 and Lemma 10 we finish the proof of Theorem 1. \Box

Of course Lemma 9 gives the possibility to obtain different results on density. For example one of them is

THEOREM 3: If H is a Hilbert space and R is a uniformly closed essentially *transitive subalgebra of* $L(H)$ *, then R contains all compact operators in* $L(H)$ *.*

Now we'll prove the equivalence of Theorem 1 and Theorem 2 in Hilbert space. We first prove that Theorem 2 implies Theorem 1 if B is Hilbert space.

Assume that Theorem 2 holds. Let $C = \overline{\lim_{\alpha}} |x_{\alpha}| \cdot |y_{\alpha}|$. If $A \in R$ then

$$
0 = \lim_{\alpha} (Ax_{\alpha}, y_{\alpha})
$$

=
$$
\lim_{\alpha} (A(x_{\alpha} - x), y_{\alpha} - y) - (Ax, y) + \lim_{\alpha} (Ax, y_{\alpha}) + \lim_{\alpha} (Ax_{\alpha}, y)
$$

where

$$
\lim_{\alpha} (Ax, y_{\alpha}) = \lim_{\alpha} (Ax_{\alpha}, y) = (Ax, y).
$$

Thus

$$
(Ax, y) = \lim_{\alpha} (A(x - x_{\alpha}), (y_{\alpha} - y)).
$$

If K is a compact operator, then

$$
|(Ax, y)| \le \lim_{\alpha} |((A - K)(x - x_{\alpha}), (y_{\alpha} - y))| + \lim_{\alpha} |(K(x - x_{\alpha}), (y_{\alpha} - y))|
$$

\$\le \|A - K\|4C\$.

Now let $z = y/4C$. Then

$$
|(Ax, z)| \le \inf_K ||A - K|| = |||A|||
$$

and so Theorem 1 follows from Theorem 2.

To prove that Theorem 1 implies Theorem 2 we use the following result (by Glimm) [5]; B is assumed to be Hilbert space.

LEMMA 11: Let $\Psi \in L(B)^*$ and $\Psi \in K(B)^{\perp}$. Then there is a pair of bounded $nets (x_{\alpha})$ and (y_{α}) s.t. (1) $w - \lim_{\alpha} x_{\alpha} = 0$, $w - \lim_{\alpha} y_{\alpha} = 0$ (2) For every $A \in L(B), \Psi(A) = \lim_{\alpha} (Ax_{\alpha}, y_{\alpha}).$

Now let $\Psi_1(A) = (Ax, y)$ where x, y are as in Theorem 1, $A \in R$. Theorem 1 gives that Ψ_1 can be extended to span $(R, K(B))$ by putting $\Psi_1(T) = 0$ for $T \in K(B)$. Now let Ψ be the Hahn-Banach extension of the Ψ_1 to all of $L(B)$. We now use Lemma 1 and get Theorem 2 with $x_{\alpha} = x + x_{\alpha}$ and $y_{\alpha} = y - y_{\alpha}$.

Finally we mention that in the case of a nonreflexive Banach space, Theorem 1 gives invariant subspace corollaries only in the dual space B^* .

Since Enilo in 1976 [4] showed that there are counter-examples to the invariant subspace problem in general Banach spaces, this may be a sign that the following result can be true: If A is a bounded linear operator in a Banach space, then A* has a nontrivial invariant subspace.

The known counterexamples do not contradict this conjecture. By Corollary 1, this would be true if the following is true: If A is a bounded linear operator in a Banach space, then there exists an algebra with PS property which contains the operator A.

References

- 1. S. R. Car~lus, W. E. Pfaffenberger and Bertram Yood, *CMkin Algebras and Algebras of Operators on Banach Spaces,* Marcel Dekker, Inc., New York, 1974.
- 2. L. De Branges, *The Stone-Weierstrass* Theorem, Proc. Am. Math. Soc. 10 **(1959), 822-824.**

 \Box

- 3. J. Diestel and J. J. Uhl, Jr., *Vector* Measures. Am. Math. Soc., Math. Surveys 15 (1977).
- 4. P. H. Enflo, On *the invariant subspace problem* for *Banach spaces,* Seminaire Maurey-Schwarz (1975-1976); Acta Math. 158 (1987), 213-313.
- 5. J. Glimm, *A Stone-Weierstrass Theorem* for C*-algebras, Ann. of Math. 72 (1960), 216-244.
- 6. C. Pearcy and N. Salinas, An *invariant* subspace theorem, Michigan Math. J. 20 (1973), 21-31.
- 7. C. Pearcy and A Shields, A survey of *the Lomonosov technique in the theory ol invaciant subspaces,* Am. Math. Soc., Math. Surveys 18 (1974), 219-230.
- 8. H. Radjavi and P. Rosenthal, *Invariant Subspaces*, Springer-Verlag, Berlin, 1973.
- 9. Bertram Yood, *Properties of linear transformations* preserved under *addition* of a *completely continuous transformation,* Duke Math. J. 18 (1951), 599-612.