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ABSTRACT 

The classical Burnside's Theorem guarantees in a finite dimensional space the 

existence of invariant subspaces for a proper subalgebra of the matrix algebra. 

In this paper we give an extension of Burnside's Theorem for a general Banach 

space, which also gives new results on invariant subspaces. 

Introduction 

The fundamental Burnside Theorem for finite-dimensional representations says 

that an algebra of linear operators on a finite-dimensional space F,  without 

invariant subspace, must be the algebra L(F) of all linear operators on the 

space. In other words, if an algebra R is strictly contained in L(F), then there 

exists x E F and ~ 6 F* s.t. for every A E R, (Az, ~) = O. 
In this paper we will extend this result to Banach spaces in the following 

way. In Theorem 1 below, let B be a Banach space, L(B) the bounded linear 

operators on B and K(B) the compact operators on B. Let ]]]AII] denote the 

essential norm of A, i.e. the distance from A to the space of compact operators. 

A weakly dosed algebra is an algebra dosed in weak operator topology. 

THEOREM 1: Let R be a weak/y dosed subalgebra of L(B), R ~ L(B). Then 

there exists x 6 B** and y 6 B*, x ~ 0 and y ~ O, s.t. for every A 6 R 

(I) I(x, A'y)I < IIIAIII. 
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If B is finite-dimensional then IIIAlll = 0, so Theorem 1 gives Burnside's 

theorem. 

For a given subset S C L(B) and a vector z E B put Sz = UAes Az and 
S' = 13 A*. We say that S is transitive if it doesn't have a nontrivial invariant 

subspace and S is essentially transitive if the conclusion of Theorem 1 is false for 

S. We say that  a subalgebra R C L(B) has the Pearcy-Salinas (PS) property if 

there exists net {A~} C R and a nonzero operator A E L(B) such that:  

(2) lim(z, A'V) = (z, A'V) 

for every vector x E B** and every functional V E B* and 

(3) lira IIIA III = 0. 

Of course, every bounded operator is a weak limit of finite-dimensional ones, so 

it is the assumption {A~} C R that  makes the condition nontrivial. 

COROLLARY 1: Let R be a weak/y dosed proper subaJgebra of L(B) with PS 
property. Then the a/gebra R' is nontransitive. 

Proof." Let z and V be as in Theorem 1. Then for every pair of operators 2"1, 2"2 

in R we have 

I(x, T~ A*T~v)I = liml(x, T~ A,~T~v)I 
o t  

< liml]IT2A~TIlI1 
~t  

_< limllT21l IITlll ItlA III 
ot  

= 0 .  

It is easy to see that  one of the three subspaces 

N ker(T*),R'y, spanTt,T2~R(T~A*T~y) 
TER 

is a nontrivial invariant subspace for the algebra R'. 

If the algebra R contains a nonzero compact operator then the PS property 

is trivially true for R. So we get the results obtained by the author's earlier 

techniques [8]. [] 
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COROLLARY 2: ~ a weak/y dosed proper  subalgebra R of  L(B)  contains a 

nonzero compact operator, then the algebra R' is nontransitive. 

Of course the existence of a hyperinvariant subspace in B* for operators that  

commute with a compact operator follows from Corollary 2. It should be men- 

tioned that the following theorem by Pearcy and Salinas [6] is not a consequence 

of the author 's  earlier techniques [see 7]. 

THEOREM (PEARCY-SALINAS): Let T be a bounded operator on Hilbert space. 

Assume that there is a sequence of rational functions (s , )  s.t. s,,(T) converges 

weakly to a non-zero operator A and s.t. 

I l l s . ( T ) l l l  ~ 0 a s  n ~ o o .  

Then T has a nontrivial invariant subspace. 

However, from Corollary 1 we get the following strengthening of the Pearcy-  

Salinas Theorem as 

COROLLARY 3: Let T be a bounded operator on Banach space. Assume that 

there is a nonzero operator A and net {A~, } of operators that commute with T 

s.t. (2) and (3) hold. Then T* has a nontrivial hyperinvariant subspace. 

The  commutant  of T is a proper subalgebra of L(B),  so Corollary 3 is an 

immediate consequence of Corollary 1. 

COROLLARY 4: Let S~ C L(B) be defined by S~ = {A e R, lllAIll <_ 1}. Then 

there exists a nonzero functional y E B* s.t. the set S ~y is not dense in B*. 

Proof'. Let x and y be as in Theorem 1. Then supllln.lll< 1 [(x,A*y)[ _< 1, so S'~y 

is not dense in B. [] 

This corollary was pointed out to us by S.W. Brown, who has obtained it and 

similar results in the case of a commutative algebra. 

In Hilbert space Theorem 1 has the following equivalent formulation. 

THEOREM 2: Let R be as m Theorem 1. Let B be Hilbert space, then there 
I1~ l l J  

e~st two bounded nets (x~) m B and (y~) in B s.t. ~ o  - ~  ~ # O, y~ - ,  y # 0 

and for every A E R 

< Axa, Ya >-+ O. 
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Proof of Theorems 1 and 2: Let B be a Banach space, Q a compact Hausdorff 

space, R a subalgebra of L(B), WQ the Banaeh space of weak*-continuous func- 

tions Q --* B* with sup-norm, SQ the subspace of WQ consisting of the strongly 

continuous functions, N R  the algebra of norm-continuous functions Q ---* R ~. Let 

C = C(Q) be the algebra of all complex-valued continuous functions on Q. Ev- 

ery function f E C(Q) is a linear operator on the space WQ. We let f* denote 

its adjoint. 

Definition: Let M be a subspace of WQ, invariant under the algebra C. We say 

that  0 E M* is a point functional if there exists a point q E Q s.t. 

(4) f*O--f(q)O 

for every function f E C. 

If E is a subspace in a Banach space let UE denote the unit ball of E and E ± 
denote the annihilator of E in the dual space. We say that  a functional 0 E M* 

is a 6(q, z) functional or simply 6-functional if there exists a point q E Q and an 

element x E B** s.t. if h E M then 

(5) O(h)=(x,h(q)). 

LEMMA 1: Let 0 E M* be a point funct iona/and assume M D SQ. Then the 
restriction X = g[sQ is a 6-functional. 

Proof: It is known [3] that  the functional X has the form 

(6) x(h) = fq(dx(q),  h(q)) 

where dx is a regular Borel measure on Q with values in B**. Let q E Q be as 

in (4). For an open set V = Q/{q} and for a given ~ > 0 there exists a closed 

set F C V s.t. Ildxlv - d x l ,  II < ~. Then there exists function f E C(Q) s.t. 

f(q) = 0, f[F = 1. If G is given Borel set and G C F,  then 

dx(G)= / a d x =  fG-fdx= f i x  = f (q)x=O, 

so d ~ l ,  = 0. This gives for every e > 0, Ildxlv II < e, a n d  so d x h ,  = O. [] 
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Let H be a Hilbert space with orthogonal basis { e , } , L I M ( a , )  a Banach 

limit in the space l ~ ,  Q compactification of integer numbers by {oo}. Then 

O(h) = LIM(h(n) ,  e,,) is an example of a point functional that is not &functional. 

Let Q x Us be the topological product of the compact Q and the ball Us 

with norm topology. The functions s • WQ and f • C(Q) define complex- 

valued functions L(s) and L l ( f )  on Q x Us for the formulas L(s)(q,x) = 

(x ,  ~(q)) ,  L~(f)(q, ~) = f(q). 

LEMMA 2: L(s ) ,L l ( f )  are continuous functions on 

QxUB. 

Proof." Let q0 E Q and x0 • UB. Let Vqo , Vxo be open subsets defined by 

v,. = {q • Q: I(~o,~(q)  - ~(qo))l < d 2 ) ,  

v=o = {~ • U B :  II~ - ~oll < d21~l} ;  

then for all (q, x) • Vx0 × Vq0 we have 

I ( ~ , , ( q ) )  - ( ~ 0 , , ( q 0 ) ) l  _< I((~ - ~ 0 , , ( q ) ) l  + I (~0 , , (q )  - , (q0)) l  

< 2--~1~1 + ~ = ~, 

so L(s) is continuous. The continuity of Ll ( f )  is obvious. UB is a completely 

regular space, so there exists the Cheh compactification F of the space Q × UB. 
The functions LI(I) and L(s) in Lemma 2 have continuous extensions to all of F.  

Thus L(M),  L(N),  L~(C(Q)) are subspaces of C(F), L(M) D L(N),  and L(M) 
and L(N)  are invariant for L1 (C(Q)). Moreover, the operators L:  M ~ C(F) 
and LI : C(Q) --. C(F) are isometries. [] 

LEMMA 3: Let ~ e L(M)*, f e C(Q) and 

(L1 f)*V = ~ ,  

then f*(L*~o) = 7(L*~). 

Proof: For a given function h e WQ we have ( h , f ' ( L ' ~ ) )  = ( fh ,  L*~) = 

(L( fh) ,~)  = (L l ( f )L(h) ,~)  = (L(h) ,Ll( f )*~)  = (L(h),7~) = (h, TL*~). [] 
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LEMMA 4: Let M, N be subspaces of WQ, inwariant for C(Q). Let M D N 
and let 0 • M* be an extreme point of UN~. Then 0 is a point-functional. 

The proof of this lemma is similar to De Branges' famous proof of the Stone-  

Weierstrass Theorem [2]. 

Proof: Let 0 be a functional in L(M)* s.t. L*(0) = 0. Then, obviously 1 = 

101 = 101. By the Hahn-Banach and Riesz Theorems there exists a measure 

dl~ • C(F)* which is an extension of 0 to space C(F). Let f be a function in 

c (o ) ,  s.t. 

(7) o _< f _< i 

mad ] = L , ( f ) ,dp l  = ]dp, dp2 = (1 - ])dp, ml = I ldml l ,m2 = Ildt,211. Then  

{dpl, dp2, dr} C L(N) ± and ml + m2 = fF ]ld~,l + fF(X -- ]) ld~' l  = fF ld~'[ = 1. 
I f  0~ = dgltL(,,,),02 = d g 2 1 L ( . ) ,  then IO, I + Io21 >_ IO~ + ozl -- z ~ d  10al + 102I _< 
ml + me = 1, so we have IO21 -- m2, IO~1 -- m , .  If ml  = 0, then (Llf)*O = 0, so 

by Lemma 3, f*O = 0. If rn2 = 0 then (1 - f)*O = 0. If ml  # 0 and m2 # 0 

then we have 

01 02 01 02 = m , - - + m ~ - - , l l  l i=l ,  lI 11=1. 

The functional 0 is an extreme point in the ball UL(N)± , SO we get 01/ml = 
or, by Lemma 3, f*O/ml = 0. So for any function f with property (7) the 

functional 0 is an eigenvector and the functions of this type obviously generate 

C(Q). The corresponding eigenvalue is a multiplicative functional on C(Q), so 

Gelfand's theorem now gives the lemma, v 

LEMMA 5: Let T • K(B) and h • WQ. Then T*h • SQ. 

We omit the simple proof. 

Let R be an algebra in L(B) and let h • WQ, ][h]l = 1. 

algebra N R  to h we get subspaces 

By applying the 

N = NR(h), M = span (N, SQ). 

Then M D N and M and N are invariant for the algebra C(Q). Let qo be a 

point functional, ~o E M*. Then, by Lemma I ,  ~ols q is a ~(q, z) functional. 
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LEMMA 6: If  functional ~p E N ±, then for every operator A E R 

(8) I(x,A*h(q))t <_ 21:1 IIIAIII [hi. 

Proof: Let T be a compact operator  s.t. IIA - TI[ <_ IIIAIII + ~. T h e n  we have 

I(x,A*h(q))[ = 16a*hl = [6 (A 'h ) -  ~(A*h)[ 

= [(6 - ~)A*h[ < ](6 - ~)(A* - T*)h[ + [(6 - ~)T*h[. 

By Lemma 5, T*h E SQ, so by Lemma 1, 6(T'h) - ~(T*h) = 0. It is clear that  

I~1 < I~1, so we get 

I(z,A*h(q))l < 2l~l IIA - TII Ihl < 21~I(IIIAIII + ~)lhl. 

Since e is arbitrary, 

I(z,A*h(q)) I < 21~ I [IIAIII Ihl • 

Let aF(T) be the subset of the spectrum of an operator  T E L(B) consisting 

of the isolated points of finite multiplicity. 

LEMMA 7: 

and 

Let the subspace L C B have finite codimension. Assume a > 0 

(9) sup IITxll 
xEL ~ < t~. 

Assume ~ e ~ (T)  and M > - Then ~ e ~F(T)  

Proof." It is sufficient to prove this lemma in the case that  7 is a boundary point 

of a(T). Let P be a bounded projection on L. Then the operator  T1 = ( T - 7 I ) P  

is semi-Fredholm. 

It is clear that kerT1 = ker P and if x E L, then 

IT:I = I(T- 71)Pxl = I(T- 71)xl >_ ([71- ~)l~l. 

So T1 has finite-dimensional kernel and closed range. T - 7 I  is a finite-dimensional 

per turbat ion of T1, so by [1, Corollary 1.3.7] T - 7 I  is also semi-Fredholm. More- 

over, T - 7 I  is a limit of invertible operators so it is a Fredholm operator  with 

index zero by [1, Theorem 4.2.1, Corollary 3.2.10]. Now by [9, Corollary 3.11] 

T - 7 I  is a compact per turbat ion of an invertible operator,  so by Well's theorem 

7 is isolated and has finite multiplicity, a 
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LEMMA 8: I f  R is an essentially transitive subalgebra, then R contains an 

operator T with the following properties: 1 E aF(T)  and i f  7 E a ( T ) \ a F ( T )  

then I'fl < I" 

Proof: Let y be a functional in B*, ]y] = 3, and let Q be a ball of radius 2 with 

center in y. Then Q is weak* compact and {0} ~ O. The function h(q) = q is 

obviously weak* continuous, so h(q) E W Q  and Ih(q)l = 5. Let M and N be 

subspaces of W Q  as in Lemma 6. If N is not dense in M, then there exists a 

functional 0 E M* which is an extreme point of UNJ-. Then by Lemma 6 there 

exists a point q0 C Q and a nonzero element z E B** s.t. the inequality 

I(x,A*h(qo))l <_ 2111AIII Ihl 

holds for every operator A E R. For y = h(qo)/21hl we get inequality (1). This 

contradiction gives that  N is dense in M. Let g be a function in SQ defined 

by g(q) = Y. Then there exists an operator-valued function A(q) E N R  s.t. 

IA(q)h(q) - g(q)I < ~. Thus the function A(q) generates a continuous map 

: Q ---, Q by the formula ff2(q) = A(q)q. By Tychonoff 's fixed point theorem 

there exists a point q0 E Q s.t. A(qo)qo = qo. We let T denote A(qo). Let V be 

open set in O defined by 

V = {q • Q: IIA(q) -TII < 4~}. 

Then 

sup [Tq - y[ < sup I(T - A(q))ql + sup [(A(q)q) - y[ 
qEV qEV qEV 

If V1 = {z : Izl < 1, z + q0 • v} then V1 is a weak* open subset of the unit 

ball UB- that  contains {0} and 

sup ITzl = sup IT(z + qo) - Tqol 
z fi Vl  z E v1 

< sup ITq - Tqol 
qEV 

< sup ITq - y[ + ITqo - vl 
qEV 

1 1 1 
< ~ + ~ = i  

By definition of weak* topology there exists a subspace L C B* of finite 

codimension s.t. L t3 UB. C V1. We have 
1 

sup ITzl < sup ITzl < 
zEUs. -- zfiVt 2 '  

so by Lemma 7 every point 7 • a(T) ,  I~1 -> 1 is an isolated point in a(T)  of 

finite multiplicity. = 
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LEMMA 9: Let R be a uniformly dosed essentJalJy transitive subalgebra L( B), 
then R contains a nonzero t]nite-dimensional projection. 

Proof." Let T be an operator  as in Lemma 8. Since {3' : (T  - 7 I )  -~ E R} is 

a component of the resolvent set of T it follows that  if (T  - 7 I )  -1 exists and 

171 > ½ then ( T -  71) -5 E R. 

By Lemma 8 there exists circle a C C s.t. 1 is the only point of a(T) inside 

a and for every point 7 E a (T  - 7 I )  -1 E R. By the Riesz theorem 

p =  1 f (  _ l d  7 -21r----'i T - 71) 

is a nonzero finite-dimensional projection and P E R ~. If P = P~ then P1 is a 

finite-dimensional projection in R. v 

Now to finish the proof of Theorem 1 we need the following well-known fact 

[8]. 

LEMMA 10: I f  a transitive algebra R contahas a nonzero finite-dimensional 
operator, then R is weakly dense in L( B). 

Essential transitivity implies transitivity, so by combining Lemma 9 and Lemma 

10 we finish the proof of Theorem t .  [] 

Of course Lemma 9 gives the possibility to obtain different results on density. 

For example one of them is 

THEOREM 3: I f  H is a Hilbert space and R is a unJ/'orm/y dosed essentially 
transitive subalgebra of L( H), then R contains all compact operators in L( H). 

Now we'll prove the equivalence of Theorem 1 and Theorem 2 in Hilbert space. 

We first prove that  Theorem 2 implies Theorem 1 if B is Hilbert space. 

Assume that  Theorem 2 holds. Let C = limalx¢,] • lYal. If A E R then 

where 

Thus 

0 = lim(Axa, yo) 

= lim(A(x,~ - x), y,~ - y ) -  (Az, y) + lim(Ax, y,~) + lira(Axe,, y) 

lim(Ax, y~) = lira(Axe, y) = (Ax, y). 

(Ax, y) = lim(A(z - z~), (Ya - Y)). 
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If K is a compact operator,  then 

[(Az,  Y)l < l iml( (A - K ) ( z  - z . ) ,  (V,~ - y))[ + l i m l ( K ( z  - z.~), (V~ - V))[ 

< IIm - g l l 4 C .  

Now let z = y/4C. Then 

I(Ax, z)l _< i~f IIA - KII = IIIAIII 

and so Theorem 1 follows from Theorem 2. 

To prove that  Theorem 1 implies Theorem 2 we use the following result (by 

Glimm) [5]; B is assumed to be Hilbert space. 

LEMMA 11: Let gt E L(B)* and g2 E K(B)  ±. Then there is a pair of bounded 
nets (x,~) and (y,~) s.t. 
(1) w - lima x~ = 0, w - lim,, y~ = 0 

(2) For every A e L(B), ~(A) = lim~(Az~, y~). 

Now let q21(A) = (Ax, y) where x,y  are as in Theorem 1, A e R. Theorem 

1 gives that  ~1 can be extended to span (R ,K(B))  by putt ing @I(T) = 0 for 

T e K(B).  Now let • be the Hahn-Banach extension of the ~ to all of L(B). 

We now use Lemma 1 and get Theorem 2 with x,, = x + x~ and y~ = y - y~. 

Finally we mention that  in the case of a nonreflexive Banach space, Theorem 

1 gives invariant subspace corollaries only in the dual space B*. 

Since Enilo in 1976 [4] showed that there are counter-examples to the invariant 

subspace problem in general Banach spaces, this may be a sign that  the following 

result can be true: If A is a bounded linear operator in a Banach space, then A* 

has a nontrivial invariant subspace. 

The known counterexamples do not contradict this conjecture. By Corollary 

1, this would be true if the following is true: If A is a bounded linear operator  in 

a Banach space, then there exists an algebra with PS property which contains 

the operator  A. 
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